Intracranial Aneurysms Update 2023

WILSON P. DAUGHERTY MD/PHD FAANS SENTARA NEUROSURGERY

Disclosure

None

Teamwork is the Key to Success

Need to select the best treatment based on the patient and the aneurysm

One size doesn't fit all

Intracranial Aneurysms

- Devastating disease
 - ▶60% mortality when rupture occurs
- About 40,000 patients treated yearly in the US
- Options
 - Observation
 - ▶ Open Clipping
 - ▶ Endovascular treatment
- Typical Treatment Threshold
 - ▶ Size > 5-7mm
 - Anatomic irregularity (daughter sac or nipple)

Causes of Morbidity and Mortality

- **▶** BLEEDING
- ▶ Rebleeding
- ▶ Rebleeding
- ▶ Hydrocephalus
- Ischemia
- Vasospasm
- ▶ Electrolyte imbalance
- ▶ SAH induced cardiac dysfunction
- ▶ Etc.

Preventing Aneurysm Rebleeding

- Calm environment
- Pain management
- ▶ If patient intubated, continuous sedation
 - Muscle relaxant if needed
- ▶ SBP <140
- Use of anti-fybrinolytic agents

ED Evaluation of SAH

- ▶ 50% of patients with SAH have warning symptoms
- ► CT Head
 - ▶ LP if CT negative with Thunderclap headache
- ► CTA Head and Neck
 - ► CTA will guide modality of treatment
 - ▶ If CTA negative
 - Catheter based angiography

ED Management of SAH

- ▶ ABCs
- ▶ BP Target varies
 - Clinical situation
 - ▶ IPH
- Avoid maneuvers can induce rebleeding
- Comatose patients assume elevated ICP
 - ► EVD
 - ▶ Mannitol
 - ► Hypertonic saline

Intracranial Aneurysms

- Craniotomy for aneurysm clipping had been the standard treatment for aneurysms for decades
- 2004: The year where coiling surpassed clipping in the US and currently endovascular is the primary treatment choice at many institutions including at Sentara
- ► The use of stents and flow diverters has allowed us to treat many more patients with complex aneurysms using endovascular techniques with fewer complications
- There remain some limitations with endovascular treatment in the setting of ruptured aneurysms especially with stents and flow diverters given the need for DAP

Surgical Morbidity

Favors Endovascular Treatment

Efficacy/Durability

- ▶ Favors Open Surgical Treatment
- Endovascular treatment continues to improve rapidly especially in the setting of flow diverters

CASE 2

30 YO Female with Coital HA Low volume SAH

DSA

Primary Coil Embolization

6 Month follow-up with recurrence

Initial treatment LAT Post

AP 6Mo MRA

6 Mo LAT with Coil compaction

Significant recurrence from coil compaction

Stent Assisted Coil Embolization

- Allows for more complete packing of aneurysm while maintaining parent vessel patency over coiling alone.
- May provide some flow diversion effect
- Limited use in SAH given need for DAP therapy
- **2001-2002**
 - First stent specifically designed to treat intracranial aneurysms
- **>** 2007
 - Second stent, different design, much improved navigability and easier to be delivered.
- ▶ Today
 - Multiple new stents now deployable from coiling catheter (Atlas, LVIS Jr, etc)

Post Y-Stent assisted coiling

Flow Diverters

- Evolution of "light metal stents"
- Higher metal to arterial wall ratio
 - Enterprise: 5-6%
 - Pipeline: 35%
- Pore to mm² ratio
- Game changer in the treatment of side wall aneurysms
- Developed for treatment of giant aneurysms now used for smaller aneurysms
- Ideally used prior to the carotid terminus to prevent occlusion of vessel at bifurcation of incomplete occlusion of the aneurysm.
- Also requires DAP therapy

"Flow Diverters" - Braided Stents Silk, Pipeline, Surpass and Others

Case 3

67 YO female 2 days of severe HA

Dry Head CT

CTA with 2.6 CM R Cavernous aneurysm

Loaded with ASA and Plavix for Pipeline Embolization

Pretreatment and 6 Mo Follow-up

Case 4

Endovascular treatment isn't for everyone

56 YO female with enlarging distal ACA aneurysm

MRA Left distal ACA

Given Anatomy and Potential for Branch loss Clipping was recommended

Postop CTA

The Goal

Individualize the best treatment possible for each patient/aneurysm

Questions

Email: wpdaughe@sentara.com

Siliman S. N Engl J Med. 2001 Oct 11;345(15):1105.