SHP Bone Scaffolding

AUTH: SHP Medical 02 v2 (AC)

Link to Codes

MCG Health Ambulatory Care 26th Edition

- Coverage
- Application to Products
- Authorization Requirements
- Description of Item or Service
- Exceptions and Limitations
- Clinical Indications for Procedure
- Document History
- Coding Information
- References
- Codes
- Codes

Coverage

Return to top of SHP Bone Scaffolding - AC

See the appropriate benefit document for specific coverage determination. Member specific benefits take precedence over medical policy.

Application to Products

Return to top of SHP Bone Scaffolding - AC

Policy is applicable to all products.

Authorization Requirements

Return to top of SHP Bone Scaffolding - AC

Pre-certification by the Plan is required.

Description of Item or Service

Return to top of SHP Bone Scaffolding - AC

Bone scaffolding uses live or man-made materials such as synthetics, ceramics, autograft bone, allograft bone etc. to repair or replace bone void defect and new bone can form or attach to.

Exceptions and Limitations

Return to top of SHP Bone Scaffolding - AC

- There is insufficient scientific evidence to support the medical necessity of the following bone graft materials as they are not shown to improve health
 outcomes upon technology review:
 - Actifuse silicated calcium sulphate
 - Allograft bone graft substitutes used exclusively as stand-alone stabilization devices for fusion (e.g., TruFuse for isolated facet fusion, NuFix for isolated facet fusion)
 - · Anterior cruciate ligament-derived stem cells for ligament tissue engineering
 - BacFast HD for isolated facet fusion
 - BIO MatrX
 - Bone Marrow Aspirate Concentrate (BMAC)
 - · Bone void fillers (e.g. Opteform, a demineralized bone matrix-based allograft; Integra Mozaik Osteoconductive Scaffold putty, etc.)
 - Cell-based substitutes (e.g. mesenchymal stem cell therapy, etc.)
 - Human growth factors (e.g. fibroblast growth factor, insulin-like growth factor, etc.)
 - · Mesenchymal stem cell therapy for spinal fusion and other orthopedic indications
 - OptiMesh
 - Osteocel
 - Platelet-rich plasma, alone or in conjunction with bone grafting materials
 - Pro Osteon Bone Graft Substitute
 - Pro Osteon Porous Hydroxyapatite Bone Graft Substitute
 - · ProDense (calcium sulfate/calcium phosphate composite)
 - Trinity Evolution Bone Matrix
- There is insufficient scientific evidence to support the medical necessity of bone scaffolding for uses other than those listed in the clinical indications for procedure section.

Clinical Indications for Procedure

Return to top of SHP Bone Scaffolding - AC

- · Bone scaffolding is considered medically necessary with 1 or more of the following:
 - Live implants (e.g. 0steogenic Protein-1 (OP-1), recombinant human bone morphogenetic proteins (rhBMPs), morphogenetic protein-7, BMP-7, etc.) as an alternative or adjunct to autologous bone grafts (autograft) for ALL of the following:
 - The implant is to be used for **1 or more** of the following:
 - Spinal fusion with **ALL** of the following:
 - An autograft is unfeasible due to 1 or more of the following:

- Individual has received a previous autograft and is not a candidate for further autograft procedures because the tissue is no longer available
- There is insufficient autogenous tissue for the intended purpose
- Individual is obese
- Individual is over 65 years old
- Individual has presence of morbidity (infection, or fracture) preventing harvesting at autograft donor site
- Individual has excessive risk of anatomic disruption (including fracture) from harvesting autograft from donor site
- Individual's bone is of poor quality (e.g. osteoporosis, etc.)
- Individual has concurrent medical condition and co-morbidities that increase the risk of autograft
- Long-bone non-union with ALL of the following:
 - An autograft is unfeasible due to 1 or more of the following:
 - Individual has received a previous autograft and is not a candidate for further autograft procedures because the tissue is no longer available
 - There is insufficient autogenous tissue for the intended purpose
 - Individual is obese
 - Individual is over 65 years old
 - Individual has presence of morbidity (infection, or fracture) preventing harvesting at autograft donor site
 - Individual has excessive risk of anatomic disruption (including fracture) from harvesting autograft from donor site
 - Individual's bone is of poor quality (e.g. osteoporosis, etc.)
 - Individual has concurrent medical condition and co-morbidities that increase the risk of autograft
 - Alternative treatments have failed including 3 or more of the following:
 - Cast immobilization or other non-operative approaches
 - Fixation (internal and external)
 - Revision of fixation
 - Autograft
 - Cadaveric allograft
 - Compression
 - Dynamization
- Synthetic implant Bone Morphogenic Protein-2 (e.g. InFuse bone graft, etc.) with ALL of the following:
 - Individual has degenerative disc disease confirmed by radiographic studies
 - The degenerative disc disease affects a single vertebrae within (and including) the level of the fourth lumbar (L4) and the first sacral vertebrae (S1)
 - Individual does not have greater than Grade I spondylolysthesis at the involved level
 - Individual has had at least 6 months of non-operative treatment
 - The implant is to be done via an anterior approach
 - In combination with a fusion device for a single-level anterior interbody lumbar fusion
 - An autograft is unfeasible due to 1 or more of the following:
 - Individual has received a previous autograft and is not a candidate for further autograft procedures because the tissue is no longer available
 - There is insufficient autogenous tissue for the intended purpose
 - Individual is obese
 - Individual is over 65 years old
 - Individual has presence of morbidity (infection, or fracture) preventing harvesting at autograft donor site
 - · Individual has excessive risk of anatomic disruption (including fracture) from harvesting autograft from donor site
 - Individual's bone is of poor quality (e.g. osteoporosis, etc.)
 - Individual has concurrent medical condition and co-morbidities that increase the risk of autograft
- The implant is to be used for 1 or more of the following
 - Orthopedic procedure that requires bone grafting that meets ALL of the following
 - Bone Graft Materials/Substitutes are medically necessary when used independently or together for the enhancement of bone healing for 1
 - or more of the following
 - $\circ~$ Allograft-based, including demineralized bone matrix (DBM)
 - Autografts
 - Bone graft substitutes containing anorganic bone material (e.g., bovine, coral) when used alone or combined with another covered bone graft substitute
 - Ceramic or polymer-based synthetic bone graft substitutes
- Bone graft materials are NOT COVERED for ANY of the following:
 - Actifuse silicated calcium sulphate
 - Allograft bone graft substitutes used exclusively as stand-alone stabilization devices for fusion (e.g., TruFuse for isolated facet fusion, NuFix for isolated facet fusion)
 - Anterior cruciate ligament-derived stem cells for ligament tissue engineering
 - BacFast HD for isolated facet fusion
 - Bone Marrow Aspirate Concentrate (BMAC)
 - BIO MatrX
 - Bone void fillers (e.g. Opteform, a demineralized bone matrix-based allograft; Integra Mozaik Osteoconductive Scaffold putty, etc.)
 - Cell-based substitutes (e.g. mesenchymal stem cell therapy, etc.)
 - Human growth factors (e.g. fibroblast growth factor, insulin-like growth factor, etc.)
 Macanaburgal stars call the range for said further as the site of the said function o
 - Mesenchymal stem cell therapy for spinal fusion and other orthopedic indications OptiMesh
 - Opuiviesh
 Osteocel
 - Platelet-rich plasma, alone or in conjunction with bone grafting materials
 - ProDense (calcium sulfate/calcium phosphate composite)
 - Pro Osteon Bone Graft Substitute
 - Pro Osteon Porous Hydroxyapatite Bone Graft Substitute
 - Trinity Evolution Bone Matrix

Document History

Return to top of SHP Bone Scaffolding - AC

- · Revised Dates:
 - 2022: October
 - · 2020: January
 - 2015: March, May, June
 - 2013: August
 - 2012: April, September
- · Reviewed Dates:
 - 2021: December
 - 2020: December
 - 2019: December
 - 2018: September
 - 2017: November
 - · 2016: July, August
 - 2015: August
 - 2014: August
 - 2011: November
- Effective Date: November 2010

Coding Information

Return to top of SHP Bone Scaffolding - AC

- CPT/HCPCS codes covered if policy criteria is met:
 - CPT 0219T Placement of a posterior intrafacet implant(s), unilateral or bilateral, including imaging and placement of bone graft(s) or synthetic device (s), single level; cervical
 - CPT 0220T Placement of a posterior intrafacet implant(s), unilateral or bilateral, including imaging and placement of bone graft(s) or synthetic device (s), single level; thoracic
 - CPT 0221T Placement of a posterior intrafacet implant(s), unilateral or bilateral, including imaging and placement of bone graft(s) or synthetic device (s), single level; lumbar
 - CPT 0222T Placement of a posterior intrafacet implant(s), unilateral or bilateral, including imaging and placement of bone graft(s) or synthetic device (s), single level; each additional vertebral segment (List separately in addition to code for primary procedure)
- CPT/HCPCS codes considered not medically necessary per this Policy:
 - · CPT 0232T Injection(s), platelet rich plasma, any site, including image guidance, harvesting and preparation when performed
 - CPT 0707T Injection(s), bone-substitute material (e.g., calcium phosphate) into subchondral bone defect (i.e., bone marrow lesion, bone bruise, stress injury, microtrabecular fracture), including imaging guidance and arthroscopic assistance for joint visualization

References

Return to top of SHP Bone Scaffolding - AC

References used include but are not limited to the following:

Specialty Association Guidelines; Government Regulations; Winifred S. Hayes, Inc; Uptodate; Literature Review; Specialty Advisors; National Coverage Determination (NCD); Local Coverage Determination (LCD).

(2022). Retrieved Sep 15, 2022, from Centers for Medicare and Medicaid Services: https://www.cms.gov/medicare-coverage-database/search-results.aspx? keyword=Bone+scaffolding&keywordType=starts&areald=s53&docType=NCA,CAL,NCD,MEDCAC,TA,MCD,6,3,5,1,F,P&contractOption=all

(2022). Retrieved Sep 15, 2022, from National Comprehensive Cancer Network: https://www.nccn.org/search-result?indexCatalogue=nccn-search-index&searchQuery=bone% 20matrix&wordsMode=AllWords

(2022, May 18). Retrieved Sep 15, 2022, from MCG: https://careweb.careguidelines.com/ed26/index.html

Comparative Effectiveness Review Of Recombinant Human Bone Morphogenetic Protein (RhBMP) For Use In Spinal Fusion. (2021, Oct 20). Retrieved Sep 15, 2021, from Hayes, Inc: https://evidence.hayesinc.com/report/dir.reco0006

Devices@FDA. (2022, Sep 12). Retrieved Sep 16, 2022, from Food and Drug Administration: https://www.accessdata.fda.gov/scripts/cdrh/devicesatfda/index.cfm? start_search=1&q=Ym9uZSBncmFmdA==&approval_date_from=&approval_date_to=&sort=approvaldatedesc&pagenum=10

Gillman, C. J. (2021, Nov). FDA-approved bone grafts and bone graft substitute devices in bone regeneration. Retrieved Sep 16, 2022, from PubMed: https://www.sciencedirect.com/science/article/pii/S0928493121006068

ISASS Recommendations and Coverage Criteria for Bone Graft Substitutes used in Spinal Surgery. (2019, Jan 30). Retrieved Sep 16, 2022, from International Society for the Advancement of Spine Surgery: https://isass.org/isass-recommendations-and-coverage-criteria-for-bone-graft-substitutes-used-in-spinal-surgery/

LCD: Facet Joint Interventions for Pain Management (L38765). (2022, May 26). Retrieved Sep 14, 2022, from Centers for Medicare and Medicaid Services: https://www.cms.gov/medicare-coverage-database/view/lcd.aspx?lcdid=38765&ver=10&keyword=facet% 20joint&keywordType=starts&areald=s53&docType=NCA,CAL,NCD,MEDCAC,TA,MCD,6,3,5,1,F,P&contractOption=all&sortBy=relevance&bc=1

Musculoskeletal Program - Appropriate Use Criteria: Spine Surgery. (2022, Sep 11). Retrieved Sep 15, 2022, from AIM Specialty Health: https://aimspecialtyhealth.com/

Procedure Fee Files & CPT Codes. (2022). Retrieved Sep 16, 2022, from Department of Medical Assistance Services: https://www.dmas.virginia.gov/for-providers/rates-and-rate-setting/procedure-fee-files-cpt-codes/#searchCPT

Sage, K., & Levin, S. (2022, Mar 30). Basic principles of bone grafts and bone substitutes. Retrieved Sep 15, 2022, from UpToDate: https://www.uptodate.com/contents/basic-principles-of-bone-grafts-and-bone-substitutes?search=bone%20scoffolding&source=search_result&selectedTitle=3~150&usage_type=default&display_rank=3#H2066905582

Sesamoid Fracture. (2021, Oct 07). Retrieved Sep 16, 2022, from DynaMed: https://www.dynamedex.com/condition/sesamoid-fracture#TOPIC_DWL_QQR_QQB

Xie, C., Wang, C., Huang, Y., Li, Q., Tian, X., Huang, W., & Yin, D. (2022, Jun 03). Therapeutic effect of autologous bone grafting with adjuvant bone morphogenetic protein on long bone nonunion: a systematic review and meta-analysis. Retrieved Sep 16, 2022, from PubMed: https://pubmed.ncbi.nlm.nih.gov/35659033/

Azoury, S., Levin, S., Bauder, A., & Kovach, S. (2021, Jul 30). Surgical reconstruction of the lower extremity. Retrieved Dec 05, 2021, from UpToDate: https://www.uptodate.com/contents/surgical-reconstruction-of-the-lower-extremity?search=Pro%20Osteon%20Bone%20Graft% 20Substitute§ionRank=1&usage_type=default&anchor=H3125720299&source=machineLearning&selectedTitle=7~150&display_rank=7#H3125720299

Chung, K., & Yoneda, H. (2021, May 21). Surgical reconstruction of the upper extremity. Retrieved Dec 05, 2021, from UpToDate: https://www.uptodate.com/contents/surgicalreconstruction-of-the-upper-extremity?search=Pro%20Osteon%20Bone%20Graft%20Substitute&source=search_result&selectedTitle=1~150&usage_type=default&display_rank=1

LCA: Billing and Coding: Facet Joint Interventions for Pain Management (A58350). (2021, Apr 25). Retrieved Dec 05, 2021, from Centers for Medicare & Medicaid Services: https://www.cms.gov/medicare-coverage-database/view/article.aspx? articleid=58350&ver=4&keyword=A58350&keywordType=starts&areald=s53&docType=NCA,CAL,NCD,MEDCAC,TA,MCD,6,3,5,1,F,P&contractOption=all&sortBy=relevance&bc=1

Marongiu, G., Contini, A., Lepri, A., Donadu, M., Verona, M., & Capone, A. (2020, Feb 24). The Treatment of Acute Diaphyseal Long-bones Fractures with Orthobiologics and Pharmacological Interventions for Bone Healing Enhancement: A Systematic Review of Clinical Evidence. Retrieved Dec 06, 2021, from PubMed: https://pubmed.ncbi.nlm.nih.gov/32102398/

Tibial Plateau Fracture. (2018, Nov 30). Retrieved Dec 06, 2021, from DynaMed: https://www.dynamedex.com/condition/tibial-plateaufracture#BONE_GRAFT_AND_BONE_GRAFT_SUBSTITUTES

Access GUDID to identify medical devices. (2020). Retrieved Dec 3, 2020, from U.S. NATIONAL LIBRARY OF MEDICINE: https://accessgudid.nlm.nih.gov/devices/search?query=

Bone sarcomas: Preoperative evaluation, histologic classification, and principles of surgical management. (2020, May 14). Retrieved Dec 3, 2020, from UpToDate 3: https://www.uptodate.com/contents/bone-sarcomas-preoperative-evaluation-histologic-classification-and-principles-of-surgical-management?search=bone% 20graft&source=search_result&selectedTitle=3~123&usage_type=default&display_rank=3#H18

Bone Void Fillers - Product Comparison - ARCHIVED Aug 6, 2019. (n.d.). Retrieved Dec 2, 2020, from Hayes 5: https://evidence.hayesinc.com/report/crr.bone3612

Clinical Research Response - Mastergraft (Medtronic) Versus Fibergraft (Johnson & Johnson) as Bone Void Fillers in Spinal Surgery. (2020, Oct 16). Retrieved Dec 2, 2020, from Hayes 2: https://evidence.hayesinc.com/report/crr.bonevoidsspine5030

Clinical Research Response - Osteocel Pro (NuVasive, Inc.) vs Trinity Elite (Orthofix Inc.) for Spinal Indications. (2019, Nov 14). Retrieved Dec 2, 2020, from Hayes 3: https://evidence.hayesinc.com/report/crr.osteocelpro4850

Eptotermin Alfa. (2018, Nov 30). Retrieved Dec 3, 2020, from Dynamed 2: https://www.dynamed.com/drug-monograph/eptotermin-alfa

FDA Regulation of Human Cells, Tissues, and Cellular and Tissue-Based Products (HCT/P's) Product List. (2018, Feb). Retrieved Dec 2, 2020, from FDA: https://www.fda.gov/vaccines-blood-biologics/tissue-tissue-products/fda-regulation-human-cells-tissues-and-cellular-and-tissue-based-products-https-product-list

Infuse Bone Graft (Medtronic) Versus OsteoAMP (Bioventus LLC) For Spinal Indications – Product Comparison - ARCHIVED Feb 22, 2020. (n.d.). Retrieved Dec 2, 2020, from Hayes 4: https://evidence.hayesinc.com/report/crr.infuse4621

OrthoGuidelines: Bone Graft. (2020). Retrieved Dec 3, 2020, from The American Academy of Orthopaedic Surgeons (AAOS): https://aaos.org/search/?q=bone+graft

Review of bone graft and bone substitutes with an emphasis on fracture surgeries. (2019). Retrieved Dec 3, 2020, from Biomaterials Research: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6417250/

Codes

Return to top of SHP Bone Scaffolding - AC

CPT®: 0219T, 0220T, 0221T, 0222T, 0232T, 0707T

CPT copyright 2021 American Medical Association. All rights reserved.

MCG Health Ambulatory Care 26th Edition